Solution 11.3.2 Mathematics Methods for Physics Arfken
From ProofWiki
Jump to navigation Jump to search
George Arfken: Mathematical Methods for Physicists (2nd Edition)
Published $\text {1970}$, Academic Press
- ISBN 0-12-059832-9.
Contents
- preface to the second edition
- preface to the first edition
- acknowledgments
- introduction
- Chapter 1. VECTOR ANALYSIS
-
- 1.1 Definitions, elementary approach
- 1.2 Rotation of coordinates
- 1.3 Scalar or dot product
- 1.4 Vector or cross product
- 1.5 Triple scalar product, triple vector product
- 1.6 Gradient, $\nabla$
- 1.7 Divergence, $\nabla \cdot$
- 1.8 Curl, $\nabla \times$
- 1.9 Successive applications of $\nabla$
- 1.10 Vector integration
- 1.11 Gauss's theorem
- 1.12 Stokes's theorem
- 1.13 Potential theory
- 1.14 Gauss's law, Poisson's equation
- 1.15 Helmholtz's theorem
- References
- Chapter 2. COORDINATE SYSTEMS
-
- 2.1 Curvilinear coordinates
- 2.2 Differential vector operations
- 2.3 Special coordinate systems -- rectangular cartesian coordinates
- 2.4 Spherical polar coordinates $\tuple {r, \theta, \varphi}$
- 2.5 Separation of variables
- 2.6 Circular cylindrical coordinates $\tuple {\rho, \varphi, z}$
- 2.7 Elliptic cylindrical coordinates $\tuple {u, v, z}$
- 2.8 Parabolic cylindrical coordinates $\tuple {\xi, \eta, z}$
- 2.9 Bipolar coordinates $\tuple {\xi, \eta, z}$
- 2.10 Prolate spheroidal coordinates $\tuple {u, v, \varphi}$
- 2.11 Oblate spheroidal coordinates $\tuple {u, v, \varphi}$
- 2.12 Parabolic coordinates $\tuple {\xi, \eta, \varphi}$
- 2.13 Toroidal coordinates $\tuple {\xi, \eta, \varphi}$
- 2.14 Bispherical coordinates $\tuple {\xi, \eta, \varphi}$
- 2.15 Confocal ellipsoidal coordinates $\tuple {\xi_1, \xi_2, \xi_3}$
- 2.16 Confocal coordinates $\tuple {\xi_1, \xi_2, \xi_3}$
- 2.17 Confocal parabolic coordinates $\tuple {\xi_1, \xi_2, \xi_3}$
- References
- Chapter 3. TENSOR ANALYSIS
-
- 3.1 Introduction, definitions
- 3.2 Contraction, direct product
- 3.3 Quotient rule
- 3.4 Pseudotensors, dual tensors
- 3.5 Dyadics
- 3.6 Theory of elasticity
- 3.7 Lorentz covariance of Maxwell's equations
- References
- Chapter 4. DETERMINANTS, MATRICES, AND GROUP THEORY
-
- 4.1 Determinants
- 4.2 Matrices
- 4.3 Orthogonal matrices
- 4.4 Oblique coordinates
- 4.5 Hermitian matrices, unitary matrices
- 4.6 Diagonalization of matrices
- 4.7 Introduction to group theory
- 4.8 Discrete groups
- 4.9 Continuous groups
- 4.10 Generators
- 4.11 $\map {\mathrm {SU} } 2$, $\map {\mathrm {SU} } 3$ and nuclear particles
- 4.12 Homogeneous Lorentz Group
- References
- Chapter 5. INFINITE SERIES
-
- 5.1 Fundamental concepts
- 5.2 Convergence tests
- 5.3 Alternating series
- 5.4 Algebra of series
- 5.5 Series of functions
- 5.6 Taylor's expansion
- 5.7 Power series
- 5.8 Elliptic integrals
- 5.9 Bernoulli numbers
- 5.10 Infinite products
- 5.11 Asymptotic or semiconvergent series
- References
- Chapter 6. FUNCTIONS OF A COMPLEX VARIABLE I. ANALYTIC PROPERTIES, CONFORMAL MAPPING
-
- 6.1 Complex algebra
- 6.2 Cauchy-Riemann conditions
- 6.3 Cauchy's integral theorem
- 6.4 Cauchy's integral formula
- 6.5 Laurent expansion
- 6.6 Mapping
- 6.7 Conformal mapping
- 6.8 Schwarz-Christoffel transformation
- References
- Chapter 7. FUNCTIONS OF A COMPLEX VARIABLE II. CALCULUS OF RESIDUES
-
- 7.1 Singularities
- 7.2 Calculus of residues
- 7.3 Applications of the calculus of residues
- 7.4 The method of steepest descents
- Chapter 8. SECOND-ORDER DIFFERENTIAL EQUATIONS
-
- 8.1 Partial differential equations of theoretical physics
- 8.2 Separation of variables -- ordinary differential equations
- 8.3 Singular points
- 8.4 Series solutions -- Frobenius' method
- 8.5 A second solution
- 8.6 Nonhomogeneous equation -- Green's function
- 8.7 Numerical solutions
- References
- Chapter 9. STURM-LIOUVILLE THEORY -- ORTHOGONAL FUNCTIONS
-
- 9.1 Self-adjoint differential equations
- 9.2 Hermitian (self-adjoint) operators
- 9.3 Schmidt Orthogonalization
- 9.4 Completeness of eigenfunctions
- References
- Chapter 10. THE GAMMA FUNCTION (FACTORIAL FUNCTION)
-
- 10.1 Definitions, simple properties
- 10.2 Digamma and polygamma functions
- 10.3 Stirling's series
- 10.4 The beta function
- 10.5 The incomplete gamma functions and related functions
- References
- Chapter 11. BESSEL FUNCTIONS
-
- 11.1 Bessel functions of the first kind $\map {J_\nu} x$
- 11.2 Orthogonality
- 11.3 Neumann functions, Bessel functions of the second kind, $\map {N_\nu} x$
- 11.4 Hankel functions
- 11.5 Modified Bessel functions, $\map {I_\nu} x$ and $\map {K_\nu} x$
- 11.6 Asymptotic expansions
- 11.7 Spherical Bessel functions
- References
- Chapter 12. LEGENDRE FUNCTIONS
-
- 12.1 Generating function
- 12.2 Recurrence relations and special properties
- 12.3 Orthogonality
- 12.4 Alternate definitions of Legendre polynomials
- 12.5 Associated Legendre function
- 12.6 Spherical harmonics
- 12.7 Angular momentum and ladder operators
- 12.8 The addition theorem for spherical harmonics
- 12.9 Integrals of the product of three spherical harmonics
- 12.10 Legendre functions of the second kind, $\map {Q_n} x$
- 12.11 Application to spheroidal coordinate systems
- 12.12 Vector spherical harmonics
- References
- Chapter 13. SPECIAL FUNCTIONS
-
- 13.1 Hermite functions
- 13.2 Laguerre functions
- 13.3 Chebyshev (Tschebyscheff) polynomials
- 13.4 Hypergeometric functions
- 13.5 Confluent hypergeometric functions
- References
- Chapter 14. FOURIER SERIES
-
- 14.1 General properties
- 14.2 Advantages, uses of Fourier series
- 14.3 Applications of Fourier series
- 14.4 Properties of Fourier series
- 14.5 Gibbs phenomenon
- References
- Chapter 15. INTEGRAL TRANSFORMS
-
- 15.1 Integral transforms
- 15.2 Development of the Fourier integral
- 15.3 Fourier transforms -- inversion theorem
- 15.4 Fourier transforms of derivatives
- 15.5 Convolution theorem
- 15.6 Momentum representation
- 15.7 Elementary Laplace transforms
- 15.8 Laplace transform of derivatives
- 15.9 Other properties
- 15.10 Convolution or Faltung theorem
- 15.11 Inverse Laplace transformation
- References
- Chapter 16. INTEGRAL EQUATIONS
-
- 16.1 Introduction
- 16.2 Integral transforms, generating functions
- 16.3 Neumann series, separable (degenerate) kernels
- 16.4 Hilbert-Schmidt theory
- 16.5 Green's function -- one dimension
- 16.6 Green's functions -- two and three dimensions
- References
- Chapter 17. CALCULUS OF VARIATIONS
-
- 17.1 One dependent and one independent variable
- 17.2 Applications of the Euler equation
- 17.3 Generalizations, several dependent variables
- 17.4 Several independent variables
- 17.5 More than one dependent, more than one independent variable
- 17.6 Lagrangian multipliers
- 17.7 Variation subject to constraints
- 17.8 Rayleigh-Ritz variational technique
- References
- GENERAL REFERENCES
- index
- Next
Further Editions
- 1966: George Arfken: Mathematical Methods for Physicists
Source work progress
- 1970: George Arfken: Mathematical Methods for Physicists (2nd ed.) ... (previous) ... (next): Chapter $1$ Vector Analysis $1.1$ Definitions, Elementary Approach: Exercise $1.1.1$
Solution 11.3.2 Mathematics Methods for Physics Arfken
Source: https://proofwiki.org/wiki/Book:George_Arfken/Mathematical_Methods_for_Physicists/Second_Edition
0 Response to "Solution 11.3.2 Mathematics Methods for Physics Arfken"
Post a Comment